I from Poland - mi.kr@interia.pl
Since March 8, 2013 I participate in project GIMPS (Great Internet Mersenne Prime Search)
So far (as of November 1, 2024) I found the Mersenne number 56,124 factors using three methods:
Parameter | Mersenne number | Factor |
The smallest Mersenne number divided by this method |
M2800951 | 209976289595486984081 (67,5 bits - 21 digits) |
The biggest Mersenne number divided by this method |
M999997627 | 3820254763305664277224711 (81,7 bit - 25 digits) |
The smallest factor | M5698607 | 9906451681081561871 (63.1 bits - 19 digits) |
The biggest factor | M999997627 | 3820254763305664277224711 (81,7 bit - 25 digits) |
Mersenne number | Factor | M103333331 | 1502212735046366507191 (70,3 bits - 22 digits) |
M103333333 | 980533203181869656953 (69,7 bits - 21 digits) |
M109777777 | 37228559200312147915783 (75,0 bits - 23 digits) |
M312020213 (palindrome) | 32576289316485929349689 (74,8 bits - 23 digits) |
M373333333 | 122932898085710697087377 (76,7 bits - 24 digits) |
M444440999 | 1772485273012075300799 (70,6 bits - 22 digits) |
M737747737 (palindrome containing 3 palindromes - 737 747 737) | 44360090772982697051711 (75,2 bits - 23 digits) |
M905696509 (palindrome) | 316601093163989338484231 (78,1 bits - 24 digits) |
M919000001 | 1093595473517132015868497 (79,9 bits - 25 digits) |
Parameter | Mersenne number | Factor |
The smallest Mersenne number divided by this method |
M56783 | 202425346136022478827654339667223 (107,3 bits - 33 digits) |
The biggest Mersenne number divided by this method |
M120012839 | 121519735251419212169032247 (86,7 bits - 27 digits) |
The smallest factor | M4914653 | 9872797601602413767 (63.1 bits - 19 digits) |
The biggest factor | M1105519 | 2915595290210483905698188678755302313032196817 (151,03 bits - 46 digits) |
Mersenne number | Factor |
M1600061 (palindrome) | 3573352964183027918221155860497 (101,5 bits - 31 digits) |
M4441111 | 16012105959687734439631172715623 (103,7 bits - 32 digits) |
M7079707 (palindrome) | 928319223277628296640447231087 (99,6 bits - 30 digits) |
M9918199 (palindrome) | 57325434492732146589727793 (85,6 bits - 2digits) |
M1771717 | 5345322660597600564822049485279823999586101560840103 - composite factor (171,8 bits - 52 digits) |
Parameter | Mersenne number | Factor |
The smallest Mersenne number divided by this method |
M5879 | 3381116440321017148580653633902983992991015840485797617951 (191.1 bits - 58 digits) |
The biggest Mersenne number divided by this method |
M18012889 | 13857697029363147737004353 (83.5 bits - 26 digits) |
The smallest factor | M1625573 | 9283472113262929369 (63.0 bits - 19 digits) |
The biggest factor | M5879 | 3381116440321017148580653633902983992991015840485797617951 (191.1 bits - 58 digits) |
Mersenne number | Factor |
M201101 | 83137493661946354942524997643711 (106,0 bit - 32 cyfry) |
M203207 | 2526577780578852399451424137273 (101,0 bit - 31 cyfr) |
M1120211 (palindrome) | 125280657037737670619618629297 (96,7 bits - 30 digits) |
M1221221 (palindrome) | 154473815636202364009228347648751 (106,9 bits - 33 digits) |
M3222223 (palindrome) | 1845521789808410044844488439 (90,6 bits - 28 digits) |
M3444443 (palindrome) | 964359101168919641266667983 (89,6 bits - 27 digits) |
M3773773 (palindrome) | 111560017554966740008537 (76,6 bits - 24 digits) |
M7118117 (palindrome) | 9580977160867216251481039 (83,0 bits - 25 digits) |
M11110111 | 61944963838589697764447441 (85,7 bits - 26 digits) |
M11111119 | 6652785869722957414101719 (82,5 bits - 25 digits) |
Parameter | Mersenne number | Factor |
The smallest Mersenne number divided by this method | M2003191 | 225007102354851248019601430113 (97,5 bits - 30 digits) |
The biggest Mersenne number divided by this method | M3000409 | 36506847546234971967385191137 (94,9 bits - 29 digits) |